2018 Consumer Confidence Report for Public Water System BETHANY HEARNE WATER SYSTEM PWS # 1980006

This is your water quality report for January 1 to December 31, 2018

For more information regarding this report contact:

Name: Terry Thomas Phone: 979-279-3461

BETHANY HEARNE WATER SYSTEM provides groundwater from Simsboro Aquifer located in Robertson County.

Este reporte incluye informacion importante sobre el agua para tomar. Para

asistencia en espanol, favor de llamar al telefono 979-279-3461

Definitions and Abbreviations

Definitions and Abbreviations

The following tables contain scientific terms and measures, some of which may require explanation.

Action Level: The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

Action Level Goal (ALG): The level of a contaminant in drinking water below which there is no known or expected risk to health. ALGs allow for a margin of safety.

Avg: Regulatory compliance with some MCLs are based on running annual average of monthly samples.

Level 1 Assessment: A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our

water system.

Level 2 Assessment: A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation has occurred

and why total coliform bacteria have been found in our water system on multiple occasions.

Maximum Contaminant Level or MCL:

The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Maximum Contaminant Level Goal or MCLG: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Maximum residual disinfectant level or MRDL: The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial

contaminants.

Maximum residual disinfectant level goal or MRDLG: The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to

control microbial contaminants.

MFL million fibers per liter (a measure of asbestos)

mrem: millirems per year (a measure of radiation absorbed by the body)

na: not applicable.

NTU nephelometric turbidity units (a measure of turbidity)

pCi/L picocuries per liter (a measure of radioactivity)

ppb: micrograms per liter or parts per billion - or one ounce in 7,350,000 gallons of water.

ppm: milligrams per liter or parts per million - or one ounce in 7,350 gallons of water.

ppq parts per quadrillion, or picograms per liter (pg/L)
ppt parts per trillion, or nanograms per liter (ng/L)

Definitions and Abbreviations

Treatment Technique or TT:

A required process intended to reduce the level of a contaminant in drinking water.

Information about your Drinking Water

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPAs Safe Drinking Water Hotline at (800) 426-4791.

Contaminants that may be present in source water include:

- Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, and septic systems.
- Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the number of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

Contaminants may be found in drinking water that may cause taste, color, or odor problems. These types of problems are not necessarily caused for health concerns. For more information on taste, odor, or color of drinking water, please contact the system's business office.

You may be more vulnerable than the general population to certain microbial contaminants, such as Cryptosporidium, in drinking water. Infants, some elderly, or immunocompromised persons such as those undergoing chemotherapy for cancer; persons who have undergone organ transplants; those who are undergoing treatment with steroids; and people with HIV/AIDS or other immune system disorders, can be particularly at risk from infections. You should seek advice about drinking water from your physician or health care providers. Additional guidelines on appropriate means to lessen the risk of infection by Cryptosporidium are available from the Safe Drinking Water Hotline (800-426-4791).

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. We are responsible for providing high quality drinking water, but we cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from

the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

Information about Source Water

'TCEQ completed an assessment of your source water, and results indicate that some of our sources are susceptible to certain contaminants. The sampling requirements for your water system is based on this susceptibility and previous sample data. Any detections of these contaminants will be found in this Consumer Confidence Report. For more information on source water assessments and protection efforts at our system contact

Terry Thomas at 979-279-3461

2018 Water Quality Test Results

COLIFORM BACTERIA

Maximum contaminant Level Goal	Total Coliform Maximum Contaminant Level	Highest No. of Positive	Fecal Coliform or E. Coli Maximum Contaminant Level	Positive E. Coli or		Likely Source of Contamination
0	1 positive monthly sample	0	0	0	N	Naturally present in the environment.

Lead and Copper	Date Sampled	MCLG	Action Level (AL)	90th Percentile	# Sites Over AL	Units	Violation	Likely Source of Contamination
Copper	2018	1.3	1.3	.146	0	ppm	N	Erosion of natural deposits; Leaching from wood preservatives; Corrosion of household plumbing systems.
Lead	2018	0	15	1.8	0	ppb	N	Corrosion of household plumbing systems; Erosion of natural deposits.

Disinfection By-Products	Collection Date	Highest Level or Average Detected	Range of Individual Samples	MCLG	MCL	Units	Violation	Likely Source of Contamination
Total Trihalomethanes (TTHM)	2018	14.7	0-14.7	No goal for the total	80	ppb	N	By-product of drinking water disinfection.

^{&#}x27;* The value in the Highest Level or Average Detected column is the highest average of all TTHM sample results collected at a location over a year'

Haloacetic Acids (HAA5)	2018	7	0-7.2	No goal for the total	60	ppb	N	By-product of drinking water disinfection.

^{&#}x27;* The value in the Highest Level or Average Detected column is the highest average of all HAA5 sample results collected at a location over a year'

Inorganic Contaminants	Collection Date	Highest Level or Average Detected	Range of Individual Samples	MCLG	MCL	Units	Violation	Likely Source of Contamination
Barium	2017	0.0512	0.0512 - 0.0512	2	2	ppm	N	Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits.
Fluoride	2017	0.36	0.36 - 0.36	4	4.0	ppm	N	Erosion of natural deposits; Water additive which promotes strong teeth; Discharge from fertilizer and aluminum factories.
Nitrate [measured as Nitrogen]	2018	.09	0.111	10	10	ppm	N	Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits.

Radioactive Contaminants	Collection Date	Highest Level or Average Detected	Range of Individual Samples	MCLG	MCL	Units	Violation	Likely Source of Contamination
Combined Radium 226/228	08/23/2016	1.5	1.5 - 1.5	0	5	pCi/L	N	Erosion of natural deposits.

Synthetic organic contaminants including pesticides and herbicides	Collection Date	Highest Level or Average Detected	Range of Individual Samples	MCLG	MCL	Units	Violation	Likely Source of Contamination
Di (2-ethylhexyl) phthalate	2018	1.4	0-1.4	0	6	ppb	N	Discharge from rubber and chemical factories

Volatile Organic Contaminates	Collection Date	Highest Level Detected	Range of Individual Samples	MCLG	MCL	Units	Violation	Likely Source of Contamination
Xylenes	2018	.0008	0.0008	10	10	ppm	N	Discharge from rubber and chemical factories

Disinfectant Residual

' A blank disinfectant residual table has been added to the CCR template, you will need to add data to the fields. Your data can be taken off the Disinfectant Level Quarterly Operating Reports (DLQOR).'

Disinfectant Residual	Year	Average Level	Range of Levels Detected	MRDL	MRDLG	Unit of Measure	Violation (Y/N)	Source in Drinking Water
Chlorine	2018	1.27	.60-2.18	4	4	ppm	N	Water additive used to control microbes.

		Secondary Constituents		
Year Sampled	Substance	Average Level Detected	Range of Levels Detected	Units
2017	Alkalinity (total)	327	322-332	Mg/l
2017	Calcium	3.40	2.68-4.12	Mg/l
2017	Carbonate	2.0	2.0-2.0	Mg/l
2017	Chloride	52.5	52-53	Mg/l
2017	Diluted Conductance	787	765-814	Umhos/cm
2017	Fluoride	0.37	.3638	Mg/l
2017	Manganese	0.0095	.00850105	Mg/l
2017	рН	8.25	8.2-8.3	Mg/l
2017	Sodium	172.5	167-178	Mg/l
2017	Sulfate	1.33	1-2	Mg/l
2017	Total Dissolved Solids	455	448-466	Mg/l
2017	Total Hardness (as CaCO3)	6.75	3.32-10.3	Mg/l

Further details about sources and source-water assessments are available in Drinking Water Watch at the following URL: http://dww.tceq

For more information about your sources of water, please refer to the Source Water Assessment Viewer available at the following URL: http://gis3.tceq.state.tx.us/swav/Controller/index.jsp?wtrsrc=

Source Water Name		Type of Water	Report Status	Location
2 - SAN ANTONIO / MARY	SAN ANTONIO / MARY	GW	Α	1106 San Antonio Street
3 - MOSS / PEEL	MOSS / PEEL	GW	А	509 MOSS AVE.
4 - POW CAMP	POW CAMP	GW	Α	12254 FAIRGROUNDS ROAD
5 - 410 W 3RD ST / REPLACED WELL 1	410 W 3RD ST	GW	Α	210 CEDAR STREET

Public Participation Opportunities - City Council Meetings

Date: 1st & 3rd Tuesday

Time: 6:00 P.M.

Location: Hearne City Hall

To learn more about future meeting (concerning your drinking water) or request one contact us at 979-279-3461

IMPORTANT INFORMATION ABOUT YOUR DRINKING WATER

Monitoring Requirements Not Met for The Bethany Water System

Our system failed to collect every required coliform sample. Although this incident was not an emergency, as our customers, you have a right to know what happened and what we did (are doing) to correct this situation.

We are required to monitor your drinking water for specific contaminants regularly. Results of regular monitoring are an indicator of whether or not our drinking water meets health standards. During September 2018 through November 2018, we did not complete all monitoring and testing and therefore cannot be sure of the quality of your drinking water during that time.

What should I do?

There is nothing you need to do at this time. You may continue to drink the water. If a situation arises where the water is no longer safe to drink, we are required to notify you within 24 hours.

What is being done?

We have collected every required coliform sample in December 2018 and are no longer in violation. Due to the official move of the Bethany Water System to the Hearne Water System, staff failed to realize that the required samples had to be filed as Bethany Water System samples. Present samples taken are now filed correctly as Bethany Water System and will continue to be filed until January 2020 as requested by the Texas Commission on environmental quality (TCEQ). We have collected every required coliform sample in December 2018 and are in no longer in violation.

For more information, please contact The City of Hearne at 979-279-3461 or 209 Cedar Street Hearne, Texas 77859.

Please share this information with all people who drink this water, especially those who may not have received this notice directly (i.e., people in apartments, nursing homes, schools, and businesses). You can do this by posting this notice in a public place or distributing copies by hand or mail.

This notice is being sent to you by Bethany Water System. Public Water System ID# 1980006

Date Distributed 6/30/2019

Mandatory Language for Monitoring and Reporting Violation Failure to Submit a Disinfectant Level Quarterly Operating Report (DLQOR) MONITORING, ROUTINE (DBP), MAJOR/CHLORINE

The [Bethany Hearne] water system PWS ID [1980006] has violated the monitoring and reporting requirements set by Texas Commission on Environmental Quality (TCEQ) in Title 30, Texas Administrative Code (30 TAC), Section 290, Subchapter F. Public water systems are required to properly disinfect water before distribution, maintain acceptable disinfection residuals within the distribution system, monitor the disinfectant residual at various locations throughout the distribution system, and report the results of that monitoring to the TCEQ on a quarterly basis.

Results of regular monitoring are an indicator of whether or not your drinking water is safe from microbial contamination.

This/These violation(s) occurred in the monitoring period(s) 7/01/2018 - 9/30/2018

We are taking the following actions to address this issue:

The Disinfectant Level Quarterly Operating Report was submitted.

Please share this information with all people who drink this water, especially those who may not have received this notice directly (i.e., people in apartments, nursing homes, schools, and businesses). You can do this by posting this notice in a public place or distributing copies by hand or mail.

If you have questions regarding this matter, you may contact Terry Thomas at 979-279-3461

Posted /Delivered on: June 30, 2019